Posts

Turning IIoT Data into Value: The 5D Architecture

What’s in it for me? Sure, the Industrial IoT is getting a lot of press—it’s been riding high on the Gartner Hype Cycle for years. But now that most people have beheld the vision and survived the deluge of glowing predictions, they are starting to ask some down-to-earth questions. In particular, engineers who have to assemble the pieces and managers who need to justify the costs are asking, “What are we going to get out of it?”

The benefit of the IoT, according to Finbar Gallagher, CEO and Founder of Fraysen Systems, is its ability to turn data into value. To explain how that happens, Gallagher has boiled down every IoT implementation into a common “5D architecture.” In his article, The 5D Architecture – A Standard Architecture for IoT, he says, “IoT systems are complex, very large scale and present many pitfalls for the system architect. Thinking about these systems in terms of the problem to be solved: turning data into value…”

The article breaks down the process of turning data into value through the interaction of five core elements, the 5D of the architecture, which can be summarized as follows:

  1. Data collection
  2. Detecting events based on changes in the data, and analysis
  3. Dispatching (decide and plan) an action based on events
  4. Delivering the action
  5. Developing value, which underlies and unites all of the above

Surrounding, connecting, and acting upon these 5D core elements are four services:

  1. Communication
  2. Presenting information
  3. Storing data and information
  4. Managing the 5 core elements.

Although these services are sometimes considered to be core elements, Gallagher separates them, because he says they do not in themselves create value. Each of these services relies on a person to extract value from them. Ultimately, value is not intrinsic to the data, analysis, plans, or actions either, but rather depends on human interaction to derive it. To make his point, Gallagher quotes a production manager who once said to him, “So if I don’t look at the charts this system presents, the system doesn’t deliver any value, does it?”

Be that as it may, people still need an IIoT system to access their data for extracting value.  And the better it functions, the more value they get. A good IIoT service will provide optimal data collection, event detection, dispatching, and delivery of action through secure and rapid communication, accurate presentation, and fully-integrated storage of data and information. Gallagher suggests some specific criteria, such as:

  • The ability to collect data from a wide range of sources, including legacy PLCs, log files, historians, and devices that may use different protocols.
  • Low latency data communication through direct, real-time connections whenever possible, avoiding high-latency approaches such as having a sender write data to files and requiring the receiver to read them.
  • Consistent event detection: repeatable and verifiable.
  • The ability to provide feedback (with or without human input) so that the system supports the ability to learn and modify action plans.
  • Data communication should be easy to use, resilient, and able to preserve structure. To these we would also add secure by design.
  • Data storage should be flexible, fully integrated, and minimal latency.

Anyone familiar with Skkynet’s approach to Industrial IoT will see that it meets the criteria that Gallagher proposes. On our own, we can’t turn data into value. That depends on you, the user. But we can provide you with easy, quick, and secure access to your data, so that you can make the most of it.

Tech Talk and Action in IIoT Data Communications

Is summer over already?  It may be hard to accept, but on my morning walks the sun rises later each day, the wind is more brisk, and the leaves are turning yellow and red.  Before fall arrives in earnest, I’d like to share a bountiful harvest of summer activity here at Skkynet.  While most of the world was on holiday and taking it easy for a few weeks, our technical team took the opportunity to jot down some of their thoughts on our specialty: data communication for Industrial IoT.

In this first installment of a new series of Tech Talk blogs, lead developer and company CEO Andrew Thomas discusses IIoT security, data protocols, best practices, and common pitfalls.  He starts by introducing the unique requirements for Industial IoT, and he challenges the assumptions that lead to inherently insecure system design.  He then discusses each of the data protocols often suggested for use in the IIoT: UDP, MQTT, OPC UA, and REST, pointing out the strengths and weaknesses of each.  The best approach, he argues, exhibits the best qualities of these and more, as well as supporting edge and fog processing and public, private, or hybrid clouds.

This is the thinking that underlies SkkyHub, Skkynet’s secure-by-design approach to Industrial IoT.  Combined with our ETK and Cogent DataHub, the result is Industrial IoT that actually works.  You can install it in green field or brownfield projects, and connect to new or existing systems, use open protocols, and provide secure, robust, real-time performance at speeds not much slower than Internet propagation speeds.  And it is available today, right now.

This fall we are putting SkkyHub, DataHub, and ETK on display and into play in several arenas.  We will be at conferences and trade shows in North America, Europe and the Far East, including OPC Foundation Seminars in Vancouver and Toronto, Industry of Things World 2017 in Berlin, Sensors Midwest in Chicago, ARM TechCon in Santa Clara, SPS Drives in Nuremberg, and SCF in Tokyo.  If you are attending any of these, please stop by.

In the field, SkkyHub customers are enjoying the benefits of the service, and some have expressed an interest in sharing their experiences.  We will be blogging about those soon.  Meanwhile, the tech team has shfited back into development mode, and we expect some exciting news from them soon as well.  Summer may be winding down, but Skkynet continues to move rapidly ahead.

Skkynet to Hold OPC UA Sandpit Event in Osaka

Technology providers from six countries gather in Japan to demonstrate secure Industrial IoT cloud connectivity for OPC UA products.

Mississauga, Ontario, September 12, 2017Skkynet Cloud Systems, Inc. (“Skkynet” or “the Company”) (OTCQB: SKKY), a global leader in real-time cloud information systems, is pleased to announce OSP 2017―OPC UA Sandpit―will be held in Osaka, Japan, on September 14, 2017.  This international event will showcase ten OPC UA products from leading industrial automation companies including Wago of Germany, B&R of Austria, Moxa of Taiwan, Comtrol of the USA, Cogent Real-Time Systems of Canada, and Kobata Gauge, Puerto, BellChild, Nissin, and NiC of Japan.  Representatives from these companies will test and demonstrate secure connectivity from their OPC UA enabled devices to the iBRESS Cloud service from BellChild, through closed firewalls and network proxies.

“These companies are at the leading edge of secure data communications for Industrial IoT,” said Paul Thomas, President of Skkynet.  “The OPC UA protocol is well-known for security within the industrial network, and this initiative demonstrates how an equally high level of security can be achieved seamlessly for IoT cloud connections.”

At the OPC UA Sandpit event, each participant will connect their hardware to a network on which BellChild’s iBRESS Box is running.  The iBRESS Box has Skkynet’s Cogent DataHub installed, which on the one hand provides OPC UA connectivity, and on the other can tunnel securely through network proxies and closed firewalls to the iBRESS Cloud.  Using OPC UA on the local network, each connected device will pass its data to the iBRESS Box, which will make it available on the iBRESS Cloud in real time.

“Skkynet’s DataHub is the key enabling technology for this kind of secure connectivity,” said Thomas.  “Functioning as the engine for both the iBRESS Cloud and the iBRESS Box, the DataHub’s unique secure-by-design approach to data communications makes it an ideal tool for Industrial IoT.”

About BellChild

BellChild is a system integration company focusing on secure system development, robust infrastructure development, and advanced operations capabilities. The company develops and maintains secure servers used to support high-speed financial transactions, which is also used to provide a robust and secure platform to support industrial cloud-based systems in the form of iBRESS™ Cloud service.  For more information, see https://www.bell-c.co.jp/.

About Skkynet

Skkynet Cloud Systems, Inc. (OTCQB: SKKY) is a global leader in real-time cloud information systems. The Skkynet Connected Systems platform includes the award-winning SkkyHub™ service, DataHub®, WebView™, and Embedded Toolkit (ETK) software. The platform enables real-time data connectivity for industrial, embedded, and financial systems, with no programming required. Skkynet’s platform is uniquely positioned for the “Internet of Things” and “Industry 4.0” because unlike the traditional approach for networked systems, SkkyHub is secure-by-design. For more information, see https://skkynet.com.

Safe Harbor

This news release contains “forward-looking statements” as that term is defined in the United States Securities Act of 1933, as amended and the Securities Exchange Act of 1934, as amended. Statements in this press release that are not purely historical are forward-looking statements, including beliefs, plans, expectations or intentions regarding the future, and results of new business opportunities. Actual results could differ from those projected in any forward-looking statements due to numerous factors, such as the inherent uncertainties associated with new business opportunities and development stage companies. Skkynet assumes no obligation to update the forward-looking statements. Although Skkynet believes that any beliefs, plans, expectations and intentions contained in this press release are reasonable, there can be no assurance that they will prove to be accurate. Investors should refer to the risk factors disclosure outlined in Skkynet’s annual report on Form 10-K for the most recent fiscal year, quarterly reports on Form 10-Q and other periodic reports filed from time-to-time with the U.S. Securities and Exchange Commission.

Red Lion adds new platforms for cellular RTUs that further IIoT connectivity

Red Lion Controls, a global expert in communication, monitoring, and control for industrial automation and networking, announced that its RAM industrial routers and cellular RTUs now support the Microsoft Azure, Cumulocity, and Nokia IMPACT IIoT platforms.

This follows the recent announcement that Red Lion’s RAM products now support the MQ Telemetry Transport (MQTT) protocol. The addition of these two platforms moves Red Lion RAM products to lead the market in the greatest number of platform integrations, providing greater flexibility for industrial customers to quickly connect to their choice of leading IIoT cloud platforms.

In addition to those announced, RAMQTT, Red Lion’s embedded MQTT client, simplifies implementations with pre-configured profiles for AT&T M2X, Amazon AWS IoT, AutoDesk Fusion Connect and Telenor Connexion. Customers connect using a simple drop-down menu to select their cloud platform of choice. Also, using the RAM Software Development Kit (SDK), connectivity can be enabled with additional platforms, including LEC IQ Web SCADA, Set-Point IPwebcontrol, Skkynet SkkyHub, and Telit deviceWISE.

Will Low Oil & Gas Prices Prod an IIoT Embrace?

There’s no doubt about it, oil prices have dropped over the past couple of years. Even if you don’t follow the news or the markets, you can tell by prices at the pump. Now averaging below $50 per barrel, the price of oil is a far cry from its heady climb to $140 per barrel in 2008, or even the $80 – $100 prices from 2010 to 2014.

As good as this news is to anyone who drives a car or takes the occasional flight, as helpful as it might be to ease pressure on the economy as a whole, oil and gas companies have had to scramble to cut costs. That’s OK for the short term, according to Craig Resnick at the ARC Advisory Group, but medium to long term they need to find a new and different way of working. And this, he says, means embracing the Industrial IoT.

In a recent blog, The Oil and Gas Industry “New Normal” Pricing Justifies Greater IIoT Investment, Resnick said, “To increase capital efficiency and profitability; reduce marginal costs; minimize downtime; improve health, safety and environmental conditions; and capture the knowledge of the retiring workforce and productivity gains hidden in data and workflow silos; the oil & gas industry must embrace IIoT and digital transformation fully, from assets to the oil field; and from design to process and operations.”

Whew! That’s quite a list of benefits. And look how deeply it needs to penetrate the industry. To achieve that level of integration, as Resnick points out later in the article, success in IIoT is impossible without a corresponding convergence of IT and OT. Done well, this combination results in a complete end-to-end solution that connects the sophisticated data processing and analytical experience of IT to the hard data coming from production machinery—be it legacy equipment that has been hammering away for decades or newly installed systems with the latest digital technologies.

Resnick’s vision of a full embrace of IIoT may seem far-fetched to old-timers, indeed to anyone who was responsible for designing industrial automation systems 20 or even 10 years ago. But “new normal” pricing in the oil & gas sector has set the bar to a point where people have to pull themselves out of their old mindsets. The rewards are tempting—the benefits of IIoT may bring the industry into a new era of prosperity. Who knows? Five or ten years from now people may wonder how anyone was able to turn a profit without it.

At Skkynet, the shift to IIoT has been fast-paced, and yet still somehow evolutionary. Sure, there are technical challenges, and security is a real issue. But whenever we step back from our work and take a look at what we are creating, we realize that it really can, in the words of Resnick, “support end-to-end process excellence, with enterprise integration and visibility that leverages existing systems and the strengths of industrial products.”

What is Edge Processing anyway?

Part 12 of Data Communication for Industrial IoT

Edge processing refers to the execution of aggregation, data manipulation, bandwidth reduction and other logic directly on an IoT sensor or device.  The idea is to put basic computation as close as possible to the physical system, making the IoT device as “smart” as possible.

Is this a way to take advantage of all of the spare computing power in the IoT device?  Partially.  The more work the device can do to prepare the data for the cloud, the less work the cloud needs to do.  The device can convert its information into the natural format for the cloud server, and can implement the proper communication protocols.  There is more, though.

Data Filter

Edge processing means not having to send everything to the cloud.  An IoT device can deal with some activities itself.  It can’t rely on a cloud server to implement a control algorithm that would need to survive an Internet connection failure.  Consequently, it should not need to send to the cloud all of the raw data feeding that algorithm.

Let’s take a slightly contrived example.  Do you need to be able to see the current draw of the compressor in your smart refrigerator on your cell phone?  Probably not.  You might want to know whether the compressor is running constantly – that would likely indicate that you left the door ajar.  But really, you don’t even need to know that.  Your refrigerator should recognize that the compressor is running constantly, and it should decide on its own that the door is ajar.  You only need to know that final piece of information, the door is ajar, which is two steps removed from the raw input that produces it.

Privacy

This has privacy and information security implications.  If you don’t send the information to the Internet, you don’t expose it.  The more processing you can do on the device, the less you need to transmit on the Internet.  That may not be a big distinction for a refrigerator, but it matters a lot when the device is a cell tower, a municipal water pumping station or an industrial process.

Bandwidth

Edge processing also has network bandwidth implications.  If the device can perform some of the heavy lifting before it transmits its information it has the opportunity to reduce the amount of data it produces.  That may be something simple, like applying a deadband to a value coming from an A/D converter, or something complex like performing motion detection on an image.  In the case of the deadband, the device reduces bandwidth simply by not transmitting every little jitter from the A/D converter.  In the case of the motion detection, the device can avoid sending the raw images to the cloud and instead just send an indication of whether motion was detected.  Instead of requiring a broadband connection the device could use a cellular connection and never get close to its monthly data quota.

Data Protocol

There is just one thing to watch for.  In our example of the motion detection, the device probably wants to send one image frame to the cloud when it detects motion.  That cannot be represented as a simple number.  Generally, the protocol being used to talk to the cloud server needs to be rich enough to accept the processed data the device wants to produce.  That counts out most industrial protocols like Modbus, but fits most REST-based protocols as well as the higher level protocols like OPC UA and MQTT.

Continue reading, or go back to Table of Contents