Posts

White House Pushes for Security

Since the ransomware attack on the Colonial Pipeline last month, the US government has become more vocal on the need for industrial cybersecurity. A recent memo from the White House to corporate executives and business leaders across the country urges them to protect their companies against hackers. Among the action items is the need to segment networks, to isolate OT from II.

“It’s critically important that your corporate business functions and manufacturing/production operations are separated,” the memo states, “and that you carefully filter and limit internet access to operational networks, identify links between these networks and develop workarounds or manual controls to ensure ICS networks can be isolated and continue operating if your corporate network is compromised.”

The memo says that although the government is leading the fight against cyber attacks of all kinds, the private sector is also expected to play their part. They are urged to back up data, update systems, and test response plans and implementations. The memo also listed five best practices from the president’s Improving the Nation’s Cybersecurity Executive Order, including:

  1. Multifactor authentication
  2. Endpoint detection
  3. Response to an incursion
  4. Encryption
  5. A capable security team
Isolate Control Networks

Most of the recommendations could apply to any system or network exposed to the Internet, but the White House also included one directly related to industrial systems: Segment your networks to protect operations. Industrial control system networks, it says, should be isolated so they can continue operating even when the management network is compromised.

This was the case with the Colonial Pipeline incident last month. Although the hack caused turmoil in the company and a week of problems for the whole East Coast of the US, it could have been much worse. If the hackers had been able to take control of the pipeline itself, we might have witnessed physical damage both to property and the environment.

To avoid such problems, isolating control networks is critical. This is best accomplished using a DMZ, a “demilitarized zone” that separates control systems from management systems. Using a DMZ ensures that there is no direct link between corporate networks and control networks, and that only known and authenticated actors can enter the system at all.

Skkynet recommends using a DMZ for OT/IT networking, and provides the software needed to seamlessly pass industrial data across a DMZ-enabled connection. Most industrial protocols require opening a firewall to access the data, but Skkynet’s patented DataHub architecture keeps all inbound firewall ports closed on both the control and corporate sides, while still allowing real-time, two-way data communication through the DMZ.

We are pleased to see support for securing industrial control systems coming from the White House and US government, as well as governments and agencies throughout the industrialized world. A more secure environment will keep costs down and production running smoothly by keeping hackers out of our control systems.

Emergency at Colonial Pipeline

Another ransomware attack hit the headlines last week.  This time it’s Colonial Pipeline, the largest in the USA by some estimates, 8,850 km long, with carrying capacity of over 3 million barrels of petroleum products.  The attack has prompted the US Department of Transportation to issue an emergency declaration, easing restrictions on overland transport of supply by truck, a necessary but high-cost alternative for the company.

Colonial is wisely reluctant to release details, so we might never know exactly who did this or how it happened.  But that’s not the point.  One way or another, a malicious actor may have compromised a node on the IT network, which could have been used as a staging ground to launch an attack on the OT (Operations Technology) network.

What we do know is how to prevent that kind of attack from spreading.  There should be no need for emergency declarations.  As we have discussed previously, most people in the know―from government regulators and standards agencies to top management and on-site engineering staff―understand that you must isolate your networks.  In this age of cloud, IoT, and digital transformation, when it is becoming possible to connect everything together, we also need to implement ways to keep things separate.

A Well-Known Solution

Isolating a control network from an IT network is not difficult.  The technology has been around for decades.  It involves inserting a defensive layer, a DMZ (Demilitarized Zone) between the two networks, and using firewalls to protect them.

The challenge lies in moving production data securely across the DMZ in real time.  This is where Skkynet’s DataHub technology shines.  The DataHub can connect to equipment and SCADA systems on the industrial side, and pass that data through the DMZ to the IT side, without opening any firewall ports on either side.

We hope Colonial Pipeline recovers quickly from this emergency, and that oil and gas will soon begin to flow again up the East Coast of the USA.  Meanwhile, we encourage others to heed this wake-up call.  The attack surface of an entire company is huge.  Persistent hackers are bound to find their way in, eventually.  The best way to prevent damage to the production systems is to isolate the corporate network from the control network and insert a DMZ.  They may get that far, but no farther.

OPC Attack Surface Exposed

Industrial systems, once of little interest to hackers, are now targeted on a regular basis, making security an ever-growing concern.  At the same time, as more companies update and add to their control systems, the OPC industrial protocol continues to grow in popularity. So it would make sense to ask the question, how vulnerable to attack is an industrial system that uses OPC?

A recent white paper by Claroty, Exploring the OPC Attack Surface, discusses a number of security vulnerabilities in the products of three well-known suppliers of OPC software.  These issues, reported to the Industrial Control System Cyber Emergency Response Team (ICS-CERT), could “expose organizations to remote code execution, denial-of-service conditions on ICS devices, and information leaks,” according to the report.

The companies involved have isolated the bugs, fixed them, and issued upgrades to their software, but the underlying problem remains.  All software has bugs, and OPC software is no exception.  Every connection to the Internet risks exposing an attack surface that could be exploited.

Unforeseen requirements

Like most industrial protocols, OPC was conceived and developed before the advent of Industrie 4.0 and the Industrial IoT.  Back then, nobody seriously considered connecting their process control systems to the Internet.  All production equipment and networks were entirely disconnected (“air-gapped”) from the outside world, or at least secured behind closed firewalls.

Connecting a factory or industrial process to an IT department or cloud service introduces risk.  The design of OPC requires an open firewall port to make a connection.  Most companies are currently using workarounds to overcome this Achilles heel, but none of them are adequate.  Using a VPN simply expands the security perimeter of a control network to the outside world of phishing emails and ransomware attacks. Using an IoT gateway to connect an OPC server to a cloud service still requires connecting the plant network to the Internet in some way.

The most secure approach

Instead, the most secure way to get data from OPC servers running on a plant network is by using one or more DMZs.  According to a recent NIST report, “The most secure, manageable, and scalable control network and corporate network segregation architectures are typically based on a system with at least three zones, incorporating one or more DMZs.”

Using a DMZ makes it possible to isolate the plant from the Internet. Although OPC alone cannot connect through multiple hops across a DMZ, adding Skkynet’s DataHub technology makes it possible.  A DataHub tunnel for OPC can establish secure, real-time data flow across the connection, without opening any inbound firewall ports.  This effectively cuts the attack surface to zero.  Even if there is an undiscovered bug lurking somewhere in an OPC server, there is much less risk.  After all, hackers cannot attack what they can’t see.

NIS 2 Raises the Bar for Network Security

Key directive: One or more DMZs are needed for the most secure, manageable, and scalable segregation of control and corporate networks.

The recent adoption of a new NIS 2 Directive by the European Commission is a sign of the times.  Beset by a world-wide pandemic, many companies across the EU have turned to digital technologies to allow their workforce to stay productive, and to facilitate access to valuable production data.  This has led to unprecedented levels of industrial data being passed between company networks and across the Internet, increasing the risk of exposure to malicious intruders.

To combat the threat, the European Commission has accepted revisions to the Directive on Security of Network and Information Systems (NIS), now calling it NIS 2. Among other things, this document mandates a number of basic security elements, including standards for networking data between the production and corporate levels of a company.

The Commission has tasked ENISA, the European Union Agency for Network and Information Security, with implementing the standards.  In pursuit of this mandate, ENISA relies on the expertise of three well-known bodies, NIST, ISO, and ISA to provide detailed descriptions of how network security should be implemented, as published in its Mapping of OES Security Requirements to Specific Sectors document.

Using DMZs

For example, the recommended way to bring process data into the corporate office is summed up in NIST document SP-800-82.  It says: “The most secure, manageable, and scalable control network and corporate network segregation architectures are typically based on a system with at least three zones, incorporating one or more DMZs.”

These three zones are the control zone (OT), the corporate zone (IT), and the DMZ itself.  The document describes the value and use of firewalls to separate these zones, and to ensure that only the correct data passes from one to the other. Using a DMZ ensures that there is no direct link between corporate networks and control networks, and that only known and authenticated actors can enter the system at all.

Skkynet recommends using a DMZ for OT/IT networking, and provides the software needed to seamlessly pass industrial data across a DMZ-enabled connection.  Most industrial protocols require opening a firewall to access the data, but Skkynet’s patented DataHub architecture keeps all inbound firewall ports closed on both the control and corporate sides, while still allowing real-time, two-way data communication through the DMZ.

Unlike MQTT, which cannot reliably daisy-chain connections across the three zones as ENISA recommends, the DataHub maintains a complete copy of the data and connection status from the source to final destination.  Thus, it provides accurate indicators of data reliability at each zone in the system, along with making the data itself available.

We applaud the European Commission for its no-nonsense stance on cybersecurity with NIS 2, and encourage all EU members, indeed any company expanding its use of corporate networking, Industrie 4.0, or Industrial IoT technologies to adhere closely to the guidance of ENISA, and to implement three-zone security using one or more DMZs.

Security During a Pandemic

Back in March of this year, Newsweek Vantage published a special report on industrial cybersecurity titled Weathering the Perfect Storm.  No sooner had it been released than we were broadsided by the COVID-19 crisis.  In response, Newsweek editor Nigel Holloway sat down to discuss this new challenge with the two main contributors to the article: Eric Cosman, President of the International Society of Automation (ISA), and Steve Mustard, an ISA executive board member.

Their insights on industrial cybersecurity during the pandemic were recorded, and are available on the ISA website.  Here are some of the highlights:

Both Cosman and Mustard agree that you need to prepare for the unexpected, even though it is difficult to imagine what that might be.  Having so many more people working remotely during this pandemic is probably leading to more cyber vulnerabilities.  Adversaries are going to try to exploit these weaknesses, and the quick, easy solution is not always the most secure.  In any case, now is the time to act.

Security – robust yet invisible

Increasing security can add friction, and people often look for creative ways to get around it.  “Convenience is at the other end of the scale to security,” said Mustard.  Cosman suggests: “We need to find ways to make security robust, yet almost invisible….The theme that goes through all of this is to integrate security into your work processes in such a way that is not seen as something that’s added on.”

IT and OT working together?

Another challenge is the difference between IT and OT (Operations Technology) cultures.  Both are running mission critical systems, but while IT thrives on change, OT shuns it. You can’t be updating an industrial system every few hours or playing what-if scenarios on a running production line.  What Mustard and Cosman suggest is to form a team of experts from both IT and OT, the “right people with the right skills and the right experience, who have the right understanding, irrespective of what organization they may come from.”

The right tools

To this we would add: Give these people the right tools.  At the heart of the security issue is providing secure access to OT system data.  Much of the exposure for remote access comes from using IT technologies like VPNs in  environments and scenarios they were not created for.  Other risks stem from using industrial protocols not designed for open networks like the Internet.

That’s why we offer data communication tools that are secure by design.  Industrial users should not have to compromise—either on security or convenience.  For our large and growing customer base, frictionless, secure access to their industrial data provided by the DataHub is a normal daily experience.  Their plants and production lines are linked in real time, they monitor their systems securely from remote locations, and they can send control commands as needed.  When the COVID-19 pandemic hit, they simply kept on working, keeping their staff safe and their mission-critical processes secure.

Working Remotely to Stop Coronavirus

Companies using Skkynet software and services expect high security for their data communications. They know they can stop computer viruses by keeping all inbound firewall ports closed. Now, with the coronavirus looming large we must do pretty much the same thing in real life. We need to keep our distance and stay behind physical walls as much as possible. And yet work must go on. The data must get through. We need to work remotely, if possible.

The problem is, logging in remotely can be risky.  Typically, you need to expose your servers via the web or a VPN―and that’s a risk that our industrial control customers cannot take.  They need tighter security, to access to their process data without exposing the process servers and networks.  Skkynet’s unique tunnelling technology provides this kind of secure access.  It lets users securely push data from their plants to our SkkyHub service, where they can access it in real time, all without opening firewalls to the outside world.

A Helping Hand

We are now offering this service at no cost to help our customers weather the coronavirus storm. For the next three months any DataHub user can connect to SkkyHub free of charge. A simple tunnel connection provides a way to access data remotely, even through DMZs and proxies. The SkkyHub service includes a web-based interface, SkkyHub WebView, that lets people build dashboards to access their data and interact with their systems from home. Those who are new to WebView can quickly get up to speed, designing pages through its web interface.  With SkkyHub, users can view and operate their control systems remotely as quickly and easily as being right in the control room.

Let’s face it. These are not easy times. Some factories have been forced to shut down, and restarting will be difficult, as Matthew Littlefield at LNS Research explains in this blog, Closing Factories is Hard, Re-Opening will be Harder. Remote access can alleviate these problems to some degree, but it must be reliable and above all, secure.

In another blog, Coronavirus Lessons for Industrial Cybersecurity: Quarantines, Sid Snitkin at ARC Advisory Group compares quarantines for coronavirus to securing industrial systems, and suggests, “Use DMZs, firewalls, zero-trust access control, anti-malware software, awareness training, and security hygiene to reduce the likelihood of an initial compromise.” He also recommends system segmentation to limit lateral movement of viruses, continuous device and system monitoring, and strengthening tools to prevent future attacks.

Doesn’t that sound a little like social distancing, washing hands, not travelling, and keeping our immune systems strong? The social structures we have developed throughout history and the technical systems we have built recently are not as different as we might imagine. They both can serve us well, but we need to protect them and keep them, like ourselves, in good health.