IoT for All

With each passing year the IoT (Internet of Things) becomes more familiar, more of a household word. What once seemed a futuristic dream—having billions of devices connected and chattering over the Internet—is now almost taken for granted. Case in point is the IoT For All website whose very name speaks volumes. It seems that everyone is using or at least touched by IoT in one way or another.

At the beginning of the year, IoT For All published an article Where Is IoT Headed in 2019? that collects and distills the thoughts of industry experts regarding the near future for the IoT. Although not specific to Industrial IoT, there was significant discussion on several themes that are of interest to us here at Skkynet:

Secure by Design

Several experts have predicted that the rapid development of the IoT with little attention being paid to security will lead to widespread attacks in the coming year—often directed at industrial and infrastructure targets. At the same time, they lament the lack of robust security solutions built into hardware, software, and services. James Goepel, CEO and General Counsel for Fathom Cyber mentioned new regulations in California that mandate a secure-by-design approach to the IoT. “I think we’re going to see many more states, and possibly the federal government, following California’s lead and creating legislation that imposes new cybersecurity-by-design requirements on IoT manufacturers,” he said. Skkynet’s customers will be ready, as they have been employing our secure-by-design approach to the IoT for years.

Edge and Hybrid Computing

This year “will be a defining year for edge and hybrid computing strategies as IoT and the global network of sensors pile on more data than the average cloud has had to handle in the past,” according to Alan Conboy, working in the Office of the CTO at Scale Computing. “This transition will officially crown edge computing as the next big thing.” This has certainly been our experience. As interest in edge computing grows, we are seeing a corresponding demand for Skkynet’s edge computing and hybrid cloud solutions.

Remote Access

“Experienced engineers are hard to find and those they do have can only visit so many remote sites in a year. Enabled by 5G and the speed with which data can travel through the air, AR (augmented reality) will enable engineers-in-training to be able to have instant intelligence about a device on which they may be working just by pointing their tablet towards it,” said Jeff Travers, Head of IoT Connectivity Management at Ericsson. Much of this remote connectivity will depend on secure, real-time, two-way data flow. Again, Skkynet’s unique approach to Industrial IoT solves problems that many managers and executives are only now beginning to realize exist.

In short, the future continues to brighten for IoT in general, and Industrial IoT in particular. At least part of our mission is to make the move to IoT as smooth and easy as possible. We want it to become the logical choice for anyone who considers it—so that it really does become IoT for all.

How Much Control Goes to the Cloud?

None. That’s what any reasonable automation engineer will tell you.  Or at least, that’s what he or she would have said a few years back.  Today, with growing interest and acceptance of Industrial IoT and Industrie 4.0, the message is starting to change.  People are talking about the possibility of doing supervisory control through cloud-based systems.  For example, the cover theme of last month’s issue of Control Engineering was “Optimize controls via cloud software“, and it included articles from MESA, Honeywell, and Skkynet related to cloud-based control of manufacturing.

Our contribution was a short article titled: “Control in the cloud: How much?”  In it we point out how users and suppliers are becoming more sophisticated in their understanding, and are starting to look at edge computing as an alternative to cloud computing.  We encourage plant engineers and managers to get the best of both approaches by putting computing power where it is needed.

We identify four areas where real-time processing can take place:

Device: Adding compute power to sensors and other equipment can reduce the amount of data sent to the plant and cloud, and also simplify upstream processing.

Plant: This is where most industrial computing has taken place traditionally, and where new computing tasks can support IIoT to improve efficiency.

Gateway: Processing and filtering data at the gateway can support installed SCADA and HMI systems by serving as an intelligent interface to the cloud.

Cloud: By reducing, managing, and enhancing the quality of the data at or near the source, cloud computing resources become more effective.

As you might expect, what you gain from using cloud services for industrial control depends on how you manage the data you send to the cloud and what you need to get back in return. The article explains how choosing the right level for each computing task can reduce costs and generate a quicker round trip time for any data or analytics that come back to the plant.

Balancing the data load at each step in the process seems to be the key to a successful implementation, and adding edge computing where it is needed looks to be the thing that pulls it all together.

When Edge Computing Makes Sense

As the concept of cloud computing becomes more familiar to industrial automation engineers and system integrators, the discussion has moved from “Whether I should use it?” to “When should I use it?”  In a recent blog, “Edge or Cloud Analytics?“, Michael Guilfoyle at ARC Advisory Group looks at the business case of cloud computing for industrial applications and compares it to edge computing.  It comes as no surprise that in many instances edge computing makes more sense.

So, what exactly is edge computing?  Generally speaking, it is the processing power of the “things” in the Internet of Things (IoT).  It has become an economically attractive complement for the cloud in IoT, thanks to rapid cost decreases for small-scale processors.  And edge computing has additional benefits for Industrial IoT (IIoT) because it means that data can be processed closer to its source.

Six Factors Favoring Edge Computing

Guilfoyle lists six factors that typically favor edge computing:

  • Connectivity: Some industrial systems are located in environments that make it difficult to maintain the regular connections necessary to sustain cloud computing.
  • Immediacy: For any mission-critical system, the closer you can get to real-time decision-making, the better. Running right on the device itself, an edge-processing system can respond in a few milliseconds, compared to a cloud system which would take at least 100 milliseconds, and often longer.
  • Volume: Industrial systems churn out enormous volumes of data, very little of which is of much interest. Edge computing can monitor the data and filter out what is irrelevant. This reduces bandwidth and frees up cloud-computing resources.
  • Cost: Related to volume, feeding large quantities of raw data to the cloud for processing is not cost effective. It is more economical to at least filter the data, or better still process it locally and send the relevant results to the cloud.
  • Privacy: Company policy or government regulations may prevent connecting process data directly to the cloud.
  • Security: Gateway hardware or software at the edge can be used to help control inbound access to the plant. Skkynet’s DHTP protocol, for example, supports outbound-only connections, keeping all firewall ports closed and eliminating the need for VPNs.
Data Abstraction – A Seventh Factor

In addition to these six factors, we would add another important contribution that edge processing can make towards enhancing the value of cloud computing: data abstraction, the ability to generalize data protocols.  The DHTP protocol, in addition to supporting secure connections, also supports data abstraction.  Skkynet’s edge-processing tools, the ETK and DataHub, can convert data from multiple connected protocols into one universal format consisting of name, value, timestamp and quality.  Using DHTP, data abstracted in this form can be transported with minimal overhead across a TCP connection and converted back into its previous protocol, or other protocols, upon its arrival.

Data abstraction solves one of the problems often associated with the Industrial IoT—the wide range of incompatible protocols.  To get all the IIoT devices talking to each other, they need a common language.  Data abstraction implemented at the edge provides a way for each device to share its data with the cloud, and to receive inputs from other devices.

For all of these reasons—connectivity, immediacy, volume, cost, privacy, security, and data abstraction—edge computing makes a lot of sense for IIoT implementations, as it allows data to be processed close to where it is needed, providing the most value at the least cost.

Wider Adoption of IIoT Forecast for 2018

With the New Year upon us, now is the time to look back at 2017 to see how far we’ve come, and look ahead to see what’s on the horizon.  After sifting through a number of predictions, it seems that most of the pundits agree that the forecast is good.  The Industrial IoT continues to grow steadily in popularity, as it becomes one of the leading application spaces for the IoT.

“There’s no question the industrial side of IoT is growing rapidly,” said Bret Greenstein, VP of IBM’s Watson IoT Consumer Business.  “In a way, it’s kind of supercharging manufacturing operators and people who do maintenance on machines by providing real-time data and real-time insights.”

“It’s clear that the internet of things is transforming the business world in every industry,” says Andrew Morawski, President and Country Chairman of Vodafone Americas. “As the technology has evolved over time, adoption among businesses has skyrocketed.”

Finding business cases

As part of this growth, the forecast is to see companies begin to apply the knowledge they have gained from small-scale test implementations and pilots to build solid use cases for IIoT technology.  “The focus is shifting from what the IoT could do to what it does, how it fits in business goals and how it generates value,” said J-P De Clerck, technology analyst at i-SCOOP.  We have seen this among our customers here at Skkynet, and we plan to share some of their experiences and use cases later this year.

Edge computing becoming a necessity

Most analysts foresee growth of edge computing as part of an overall IIoT solution.  As we explain in a recent Tech Talk, edge computing means doing some data processing directly on an IoT sensor or device, as close as possible to the physical system, to reduce bandwidth and processing on cloud systems. Daniel Newman, a Forbes contributor says, “Edge networking will be less of a trend and more of a necessity, as companies seek to cut costs and reduce network usage.” He sees IT companies like Cisco and Dell supporting the move to edge computing in IIoT hardware, as well as the industrial providers that you would expect, such as GE and ABB.

Security remains a fundamental challenge

There is one thing that pretty much every analyst and pundit agrees on: security is still a challenge.  Various ideas are being discussed.  One commentator suggested that companies making large investments in IIoT have gained or eventually will gain the expertise and resources needed to meet the challenge.  Others suggest that an altogether new model might be necessary.  “We have reached a point in the evolution of IoT when we need to re-think the types of security we are putting in place,” said P.K. Agarwal, Dean of Northeastern University’s Silicon Valley in a recent Network World article. “Have we truly addressed the unique security challenges of IoT, or have we just patched existing security models into IoT with hope that it is sufficient?”

As we see it, patching up existing models is not the answer.  Providing secure access to industrial data in real time over the Internet is not something that traditional industrial systems were designed to do.  As more and more IIoT implementations come online, and as companies search for robust systems that can scale up to meet their production needs, we believe they will come to that realization as well.  Our forecast for 2018 is that an increasing number of those companies will begin to realize the value of an IIoT system that is secure by design.