Posts

Requirements for IIoT Data Communication

Part 2 of Data Communication for Industrial IoT

When we look at the IIoT there are three main requirements:

1. Access to device data: Our connected devices generate information that we want to use.  It can be as simple as a door sensor in a home security system or as complex as an oil drilling platform’s SCADA system.  The common theme is that remote access to the information has value. There are different scenarios within the industrial sector for this kind of access.

  • Plant to field device
  • Device to device (M2M)
  • Central office to process systems (IT to OT)
  • Central location to remote locations (data gathering, possible supervisory control)
  • Vendors / OEMs to in-plant or field devices (monitoring)

2. Remote control of the device: Sometimes it is necessary to control the system we are accessing remotely.  If a door sensor says the door is unlocked then we might like to lock it.  If our SCADA system says that a machine is malfunctioning we would like to turn it off.  Remote control should of course be optional.  The determination of whether control is allowed should be made at the device, so attempts to control the system remotely will fail if the device is not configured to allow it.

3. Security: We have all heard of security breaches in connected systems.  Hackers turn home appliances into bots on spam networks.  SCADA systems are remotely hacked to shut down or otherwise damage industrial systems.  A couple of years ago a power plant in the Ukraine was hacked.  Attackers “used stolen VPN credentials to reach the industrial control systems network, and remote access tools to control the HMIs and pull the breakers,” according to an article published on the DarkReading website, and other reports.

Commenting on the recent WannaCry attack and its implications for the Industrial IoT, Brad Hegrat in an IOActive blog wrote, “It may be time to rethink critical infrastructure cybersecurity engineering because if MS17-010 exploiting malware variants are successful, we are clearly doing something wrong.”

The security for IIoT data communication systems must be improved to prevent these kinds of attacks.  And, as we will explain later, securing an industrial system for the IoT is fundamentally different from traditional industrial network security.  A new approach is needed.  IIoT must be secure by design.

Continue reading, or go back to Table of Contents

Data Communication for Industrial IoT – Introduction

Part 1: Introduction

What is the IoT?  Is it really just a fancy word for the Internet?  Yes and no.  The Internet of Things is the promise of a world where billions of connected devices are connected to us and to each other, making decisions for us, coordinating among themselves, collecting and collating information, and generally relieving us of the mundane aspects of living in the physical world.

We’ve had the Internet for enough time now that it has become embedded in our lives.  My (adult) kids don’t remember a world without it.  The IoT is, at its most basic level, a continuation of that embedding.  Instant communication is taken for granted among people, and plenty of mature products provide it.  Is there anything really novel about devices participating in that communication alongside people?

In a word, yes.  Not novel in the sense that we need entirely new technologies to achieve this data communication among devices, but novel in the sense that a whole raft of new problems arise from it.  The IoT is going to remain nothing but a promise until those problems are solved (shameless plug here: I’m writing this from a backward-facing perspective.  We at Skkynet have solutions for the problems I will discuss in this series).

So what is the Industrial IoT (IIoT)?  Does it require a different way of thinking about IoT, relative to the “regular” IoT?  Not really, the IIoT just has greater consequences.  If somebody hacks your refrigerator, your food gets too hot or cold, or you become an unwitting source of spam email.  If somebody hacks your industrial process they could shut down an expensive line, damage equipment, injure people, or even put critical infrastructure out of service.  That said, the data communication, network security, privacy, speed, latency and accessibility issues surrounding the IoT are the same in the IIoT, just with more urgency.

On the other hand, is the IIoT simply the application of IoT technology to industrial applications?  Not really; rather, it is the application of IoT concepts to industrial applications.  This series of articles will examine some of these concepts related to communication for the Industrial IoT.  Even that is a very big topic, covering data acquisition, protocol gateways, cloud protocols, data storage, big data analysis, reliability, fault tolerance and security.  To keep things short we will narrow the conversation further to look at data acquisition, communication and security.

Continue reading, or go back to Table of Contents