Posts

Value Propositions for Industrial IoT

A mong all the fanfare and hoopla over the Industrial IoT, the more practical-minded among us quietly but persistently raise the question, “So, where’s the value?” It’s a fair question. The IoT represents a new area of influence for industrial automation. Before embarking on such a venture, it’s good to have some idea what the benefits may be.

As we see it, there are two main parties involved, producers and suppliers, and each of them stands to benefit in their own way:

Producers

By “producers” we mean any company in the industrial sector that produces goods or services, such as manufacturing, energy, oil & gas, chemicals, mining, water & wastewater, transportation, food & beverages, and so on.

OPEX over CAPEX

Traditionally, projects in the industrial sector require large up front capital expenses (CAPEX) and are usually accompanied by long-term commitments. Shifting these costs to operational expenses (OPEX) means that you do not need to justify a large capital expenditure over years of returns. Just like a cup of coffee, you buy it, consume it and when you need more, you buy it again.

The SkkyHub “pay as you go” model cuts costs in this way. There are no long-term commitments and no initial capital investments. Costs are reduced and shifted from high capital expenses to monthly operating expenses, which improves long-term expense planning and looks better on financial statements.

Data as a Service

There is no need for additional IT personnel or extra hardware, no programming and no upgrade headaches. SkkyHub takes care of data connectivity, freeing up customer staff and resources for higher priority tasks, while increasing ROI.

The Efficiency of Big Data

Knowing exactly what is happening at any given time in the system is a useful step that a producer can take towards improving efficiency, enhancing value. Until recently, this kind of analysis was only available to the biggest enterprises. Now SkkyHub provides a cost-effective way to bring the power of big-data collection to even the smallest enterprise. Combined with custom or third-party analytical tools, the real-time data flowing through SkkyHub can power both historical and real-time analysis, boosting KPIs and enabling significant gains in productivity.

Overall Equipment Effectiveness (OEE)

Overall equipment effectiveness (OEE) is a measure of how efficiently production equipment is being used. In manufacturing, for example, OEE is calculated according to three measures: uptime of production equipment, quantity of output, and quality of finished products. Manual methods and historical data archives give a rough idea of OEE, but according to a recent paper published by the ISA, a much more precise and relevant picture can be drawn by combining real-time operational visibility with real-time analytics. Any drop in production uptime or quantity, or in the quality of finished goods will be noticed immediately, and a fix can be applied on the spot, rather than waiting days, weeks, or months for a report to be generated.

Predictive Maintenance

Today’s engineers and managers recognize the need to shift from reactive to predictive maintenance. Instead of asking “What happened?” or “What’s happening?” they want to be asking “What will happen?” Instead of just putting out fires, management and production staff can use the real-time data provided by SkkyHub for optimization, data mining, and fault prediction.

Suppliers

By “suppliers” we mean companies that supply goods or services to industrial companies, in three broad categories:

  1. Raw Materials Suppliers
  2. OEMs (Original Equipment Manufacturers) and Equipment Vendors
  3. System Integrators
Raw Materials Suppliers

Connecting to a customer’s process data via the Industrial IoT provides value by giving suppliers a window into the real-time consumption rates of the raw materials they provide. This allows them to offer just-in-time deliveries, and coordinate their production with demand in real time. A well-known business model shows how the lack of communication between suppliers and producers can cause costly shortages and wasteful overruns. If the Industrial IoT is extended further to include customer order data, then the supply-production-delivery chain could be fully coordinated, with minimal waste and maximum profit.

OEMs and Equipment Vendors

Implemented properly, the Industrial IoT provides a way for OEMs and equipment vendors to monitor their tools and machines in real time. As industrial equipment grows increasingly complex, more and more specialized knowledge is required to maintain and keep it running at optimal efficiency. Meanwhile, customers constantly demand higher uptime rates.

The solution is to stay connected 24/7 in real time. This kind of connection provides vendors and manufacturers immediate notification when something goes wrong, and a convenient channel to check settings and tweak configuration. Rather than sending a technician out to the plant, the tech support team can address the problem using the full set of in-house resources. For the big picture over time, with every machine connected, the vendor or manufacturer can collect histories for every unit in the field, and analyze the data over the entire life of the product.

Given the benefits of OPEX over CAPEX, the growing complexity of machinery, and the convenience of remote monitoring and service, the Industrial IoT may well facilitate a trend towards providing equipment as a service. Plant owners pay a monthly leasing fee for the equipment, and tool manufacturers and/or vendors ensure that it is in place and functioning as expected.

System Integrators

System integration companies come in all sizes, from lone entrepreneurial engineers to mid-sized specialty shops to multi-national giants. Each may offer a different range of skills, products, and services. As the Industrial IoT gains traction, system integrators may begin looking for a way to offer such a service that works well.

Skkynet offers revenue sharing opportunities that meet the needs of any size system integrator working with customers in any sector or niche market. Skkynet partners are able to offer their customers a secure end-to-end solution for the Industrial IoT right now―at a fraction of the cost associated with ad-hoc or home-grown solutions. System integrators who can offer value through best of breed technology to enhance customer performance will deepen relationships with existing clients and grow their customer base.

Skkynet’s ETK for the Renesas Synergy™ Platform Now Available at No Cost

Engineers and developers using the Renesas Synergy Platform can now connect their projects to the Industrial IoT quickly, securely, and free of any royalty or development license fees.

Mississauga, Ontario, February 2, 2016 – Skkynet Cloud Systems, Inc. (“Skkynet” or “the Company”) (OTCQB:SKKY), a global leader in real-time cloud information systems, announces that Skkynet’s ETK (Embedded Toolkit) for the Renesas Synergy™ Platform is now available for download from the Renesas Synergy Gallery, as part of the Renesas Synergy Verified Software Add-on (VSA) Program. The ETK is offered by Skkynet free of any royalty or development-license fees, allowing engineers and developers to quickly and securely enable their projects for the IoT, while providing a platform to earn a recurring revenue stream.

“Using the ETK gets Renesas Synergy developers up and running on the IoT right away on a robust, secure, end-to-end system” said Paul Thomas, President of Skkynet. “They can send data from their project to our SkkyHub™ service and view their data in a web browser, or link to other devices. They can also connect via the ETK to our DataHub® industrial middleware, and link their project to virtually any in-plant industrial system.”

Last month Renesas announced the mass production of the Renesas Synergy Platform, which is an integration of qualified software, scalable microcontrollers (MCUs), hardware solutions and tools designed to reduce development time, lower the total cost of ownership, and eliminate obstacles that engineers face when developing products for the IoT.  The Renesas Synergy VSA Program was launched as a way to broaden the value of the Synergy Platform and give customers access to specialized software like Skkynet’s ETK that is already verified as compatible with the Synergy Software Package (SSP).

Skkynet’s SkkyHub service allows industrial and embedded systems to securely network live data in real time from any location. It enables bidirectional supervisory control, integration and sharing of data with multiple users, and real-time access to selected data sets in a web browser. The service is capable of handling over 50,000 data changes per second per client, at speeds of just microseconds over Internet latency. Secure by design, it requires no VPN, no open firewall ports, no special programming, and no additional hardware.

Skkynet’s Cogent DataHub industrial middleware solution connects to virtually any industrial system using standard protocols such as OPC, Modbus, TCP, and ODBC to support OPC networking, server-server bridging, aggregation, data logging, redundancy, and web-based HMI.

The ETK, DataHub, and SkkyHub will be demonstrated live by Renesas at ATX West 2016 in Anaheim, California February 9-11, 2016 (Hall B, Booth #4594), as well as at the Nineteenth Annual ARC Industry Forum, “Industry in Transition: Navigating the New Age of Innovation” in Orlando, Florida, February 8-11, 2016, hosted by the Arc Advisory Group.

About Skkynet Cloud Systems, Inc.

Skkynet Cloud Systems, Inc. (OTCQB:SKKY) is a global leader in real-time cloud information systems. The Skkynet Connected Systems platform includes the award-winning SkkyHub™ service, DataHub®, WebView™, and embedded toolkit software. The platform enables real-time data connectivity for industrial, embedded, and financial systems, with no programming required. Skkynet’s platform is uniquely positioned for the “Internet of Things” and “Industry 4.0” because unlike the traditional approach for networked systems, SkkyHub is secure-by-design. Customers include Microsoft, Caterpillar, Siemens, Metso, ABB, Honeywell, IBM, GE, Statoil, Goodyear, BASF, E.ON, Bombardier, and the Bank of Canada. For more information, see http://skkynet.com.

Safe Harbor:

This news release contains “forward-looking statements” as that term is defined in the United States Securities Act of 1933, as amended and the Securities Exchange Act of 1934, as amended. Statements in this press release that are not purely historical are forward-looking statements, including beliefs, plans, expectations or intentions regarding the future, and results of new business opportunities. Actual results could differ from those projected in any forward-looking statements due to numerous factors, such as the inherent uncertainties associated with new business opportunities and development stage companies. We assume no obligation to update the forward-looking statements. Although we believe that any beliefs, plans, expectations and intentions contained in this press release are reasonable, there can be no assurance that they will prove to be accurate. Investors should refer to the risk factors disclosure outlined in our annual report on Form 10-K for the most recent fiscal year, our quarterly reports on Form 10-Q and other periodic reports filed from time-to-time with the Securities and Exchange Commission.

Secure Remote Monitoring and Supervisory Control

New technologies such as Software as a Service, the Internet of Things and cloud computing for industrial process temperature bring new challenges, but there are solutions.

Interest in using cloud computing — also known as Software as a Service (SaaS) — to provide remote access to industrial systems continues to rise. Vendors and company personnel alike point to potential productivity improvements and cost savings as well as convenience. Operators and plant engineers may want to receive alarms and adjust heating controls while moving around the plant. Managers would like to see production data in real time — not just in end-of-shift or daily reports. Hardware vendors could benefit from getting live readings from their installed equipment for maintenance and troubleshooting operations.

Some industrial processors are attempting to provide this kind of window into their production systems. Yet, many question the wisdom of opening up a plant’s mission-critical control network to the possibility of malicious attack or even misguided errors. With a proper understanding of what is at stake, what is being proposed and how it can best be implemented, you can better decide whether remote access to your production data could benefit your company.

Security First for Industrial Networks

When talking about remote access to plant data, the first concern is security. Any approach that exposes the control system to unauthorized entry should be off the table. One popular approach is to secure the network against any potential intruders and open it only to trusted parties. Connections into the plant typically originate from smartphones, tablets, laptops or desktop computers. These systems usually are running a human-machine interface (HMI), remote desktop application, database browser or other proprietary connector.

In most cases, the plant engineering staff or IT department can grant client access to the network via a virtual private network (VPN), so authorized users can get the data they need. However, a typical VPN connection provides link-layer integration between network participants. This means that once on a network, an outsider has access to all other systems on the network. Thus, the company must either fully trust each person who comes is granted access to the network, or the company must task the IT manager with securing and protecting the resources within the network.

It would be unwise to risk giving visitors full access to everything that a VPN exposes. Using a VPN this way is a little like having a visitor come into your plant. Suppose a service technician arrives at the gate saying he needs to check a piece of equipment. You could just tell the guard to check his credentials, and if he checks out, give him a hardhat, directions and send him in. That is the limited-security approach. A better way would be to provide a guide to ensure that the technician finds his destination, does his work and leaves with only the information he came to get. It takes more effort and planning, but if you are going to allow someone to enter the premises, such effort is necessary to ensure security.

Better than VPN

An even better approach is to only allow access to the data itself. Consider this: the user of the data — be it vendor, customer or even corporate manager — does not need access to the whole network. Instead, they just need the data. So, rather than allowing a client to log on via a VPN connection while the IT manager works to secure confidential areas of the network from the inside, wouldn’t it be better to provide access to the data outside of the network altogether?

To continue our analogy, this would be like the guard handing the service technician exactly the data he need he arrived at the gate. There is no need to open the gate and no need to let him into the plant. In fact, the service company, vendor or other authorized party could request the data be sent to their own location, so they do not even have to go to the plant in the first place. This approach to remote monitoring is far more secure.

Is such a scenario realistic? Yes, if you use the right technology in the right way. For example, WebSocket is a protocol that supports communication over TCP, similar to HTML. But unlike HTML, once a WebSocket connection is established, client and server can exchange data indefinitely. The protocol also supports SSL encryption, a well-tested security protocol. Thus, WebSocket technology can be used to open and maintain a secure data tunnel over TCP from a plant to a cloud server without opening any ports in any firewalls. Once the tunnel connection is established, data can flow bi-directionally.

Isolating the Industrial Process Data

Such a data-centric approach to remote monitoring and supervisory control has several benefits. One key advantage is that the process can run in complete isolation from the remote client. Low-level control — and, in fact, all systems within the plant — remain completely invisible to the remote clients. The only point of contact for the remote client is the selected data set being streamed from the plant, and that data resides in the cloud.

While nobody seriously imagines making low-level control changes over a cloud connection, a solution based on WebSocket technology could allow both read-only and read/write client connections for those applications where remote changes are deemed acceptable. Authorized personnel then would have the ability to effect change in plant processes for diagnostic or maintenance purposes via a secure connection. This approach would not require any open firewall ports, so the plant remains invisible to the Internet.

Regardless of the intended use of the data, a correctly provisioned WebSocket connection to the cloud provides the process isolation needed to provide access to data without jeopardizing your in-plant systems.

Any Data Protocols

Another advantage to this approach is that it can be protocol-agnostic. Ideally, the system would carry only the raw data over TCP in a simple format: name, value and timestamp for each change in value. The connector would convert the plant protocol, such as OPC or Modbus, to a simple data feed to the cloud. Requiring a minimum of bandwidth and system resources, the data would flow in real time to all registered clients.

Each client, in turn, can convert the data into whatever format is most convenient and appropriate for their application. Options include spreadsheets, databases, web pages or custom programs.

Better yet, this approach to remote monitoring is not necessarily limited to in-plant connections. Custom-developed WebSocket connectors small enough to fit on embedded devices such as temperature sensors or flowmeters could be placed at remote locations any distance from the plant. Then, by wired or cellular connections to the Internet, the devices would connect directly to the cloud via WebSocket tunnels, without going through the traditional SCADA system, if need be. Such high-performance connectivity would support secure, real-time M2M communications and meet essential requirements of the industrial Internet of Things (IoT).

Changes and Challenges

However you look at it, change is on the horizon for industrial process control systems. The current state of the art for networked control systems was made possible by dramatic technical breakthroughs in the 80s and 90s. Many industry experts say that we are now on the verge of similar breakthroughs in remote monitoring and supervisory control. Whether they call it cloud computing, Software as a Service (SaaS), Industry 4.0 or the Industrial Internet of Things (IIoT), most will agree that the biggest challenge right now is security.

New technology provides new capabilities, and it also presents new demands that may challenge our way of thinking. Accessing data from a plant or remote sensor halfway across the world needs a different approach to security than our current models were designed for. Yet, there is no need to remain attached to the status quo if it does not truly meet the needs. These are engineering problems, and there are engineering solutions.

Bob McIlvride is the director of communications with Skkynet Cloud Systems Inc., Mississauga, Ontario, Canada. Skkynet provides secure cloud-service remote monitoring services and can be reached at 888-628-2028 or visit the website at http://skkynet.com.