Digital Twins Thrive on Data Integration

Digital twins. The term was coined only ten years ago, but the concept is rapidly becoming a must-have in the manufacturing sector. Last year a Gartner poll found that 62 percent of respondents expect to be using digital twin technology by the end of this year, although only 13 percent of them were actually using it at the time. A key factor in this sudden interest is that “digital twins are delivering business value and have become part of enterprise IoT and digital strategies.”

What exactly are digital twins, and why are they getting so much attention lately? A digital twin is made up of three basic components: a physical system, a virtual representation of it, and the data that flows between them. The physical system could be an individual device, a complex machine, a whole production line, or even an entire factory. The virtual representation can be as complex as necessary to represent the system. The data connection keeps the virtual twin as closely in sync as possible with the physical twin, often tracking and updating changes in real time.

The Value and Challenge of Data Integration

A digital twin operating in isolation is useful, but the real rewards come through making connections. Data integration between multiple sub-components of a digital twin, or between multiple digital twins, is key when advancing beyond simple pilot projects. “The ability to integrate digital twins with each other will be a differentiating factor in the future, as physical assets and equipment evolve,” says the Gartner report.

There are at least three types of relationships:

  • Hierarchical, in which digital twins can be grouped together into increasingly complex assemblies, such as when the digital twins for several pieces of equipment are grouped into a larger digital twin for a whole production line.
  • Associational, where a virtual twin for one system is connected to a virtual twin in another system, in the same way that their physical counterparts are interrelated, such as wind turbines connected to a power grid.
  • Peer-to-peer, for similar or identical equipment or systems working together, like the engines of a jet airplane.

Making these connections is not always easy. A recent publication from the Industrial Internet Consortium (IIC), titled A Short Introduction to Digital Twins puts it this way, “Since the information comes from different sources, at different points in time and in different formats, establishing such relations in an automatic way is one of the major challenges in designing digital twins.”

The IIC article briefly discusses some of the technical aspects this kind of integration, such as:

  • Connectivity, the necessary first step for data integration.
  • Information synchronization keeps a virtual twin in sync with its physical twin, and among multiple connected twins, maintaining a history and/or real-time status, as required.
  • APIs allow digital twins to interact with other components of a system, and possibly with other digital twins as well.
  • Deployment between the edge and the cloud pushes data beyond the OT (Operations Technology) domain to the IT domain, that is, from the physical twin to the virtual twin.
  • Interoperability between systems from different vendors may be necessary to gain a more complete picture of the total system functionality.

Another useful resource, Digital Twin Demystified from ARC Advisory Group, identifes data connectivity, collection, tracking volume & fidelity, and ensuring the quality of real-time data as being “key challenges associated with using real-time and operational data” in digital twins.

A Good Fit

Skkynet’s software and services are well-positioned to provide the kind of data integration that digital twins require. Most data on an industrial system is available to an OPC client like the DataHub, which ensures robust connectivity. Virtually any other connection to or between digital twins, such as from legacy hardware or custom software, is possible using the DataHub’s open APIs.

Real-time data mirroring between DataHubs can handle the synchronization needed for tight correlation between the physical and virtual systems. The secure-by-design architecture of DHTP provides a proven way to connect twins across insecure networks or the Internet, even through a DMZ, to ensure the highest level of security for both the physical twin on the OT side, as well as the virtual twin on the IT side.

By supporting the most popular industrial communications protocols, and through secure, real-time data mirroring, Skkynet software and services are often used to build fully integrated systems out of components from different vendors. A recent example of this is in the TANAP project in which DataHub software was used to integrate OPC A&E (Alarm and Event) data from ABB systems with other suppliers, effectively creating a virtual digital twin of the entire 1800 km pipeline.

Digital twinning can be seen as one aspect of the whole area of digital transformation in industry. As companies move towards digitizing their operations, the ability to create a virtual twin of each component, machine, production line, or plant, and connecting that twin to their IT systems will put better control of production into the hands of managers and executives, leading to greater efficiencies. The success of this undertaking, at every step of the way, depends on secure data integration among the digital twins.

Industrial IoT in 2020 and Beyond

As the new year and new decade of 2020 begin, all indicators point to continued growth of IoT and digital transformation in the industrial space. A recent Gartner analysis sees no slowdown in growth of Industrial IoT markets. In areas as diverse as manufacturing, natural resources, automotive, and healthcare, the rate of adoption is expected to increase.

“Economies, jobs, and personal lives are becoming more digital, more connected, and more automated,” according to CompTIA’s IT Industry Outlook 2020 report. Here are a few of the trends in data communications that the report highlights:

  • Redefining IT Architecture for Digital Transformation – “As with cloud computing and mobile devices, the groundwork has been laid for IoT to advance digital transformation.”
  • Increased Demand for Integrating Platforms, Applications, and Data – “According to CompTIA’s Tech Buying Trends Among Small & Medium-Sized Businesses, the top technology area where SMBs need the most work is integrating various platforms, applications, and data. Large businesses are focused on integration as well, but they have more internal resources that they can lean on.”
  • A Proactive Approach to Cybersecurity – “The theme of cybersecurity over the past decade was a shift from a purely defensive mindset to a proactive approach that combined technology, process, and education. … organizations are beginning to treat cybersecurity as a dedicated function.”

Another publication, IoT World Today, has published 6 IoT Security Predictions for 2020. Among these, two stand out for us as particularly relevant. On the one hand, there is a growing awareness among plant engineers and managers about the need for OT security. “Customers I talked to with OT environments are very nervous about security,” said Andrew Howard, CEO of Kudelski Security. “And I think [this trend is] likely to accelerate.”

On the other hand, IoT World Today editors are seeing the concept of secure-by-design gain wider acceptance. They quoted Hima Mukkamala, senior vice president and general manager, IoT cloud services at Arm saying, “Security will be a key factor in the decision-making process for organizations as they look at deploying IoT infrastructure in 2020.”

Looking further down the road

In past years, many IoT forecasts looked ahead to the year 2020. Now that we are here, most people are accustomed to the idea of an Industrial Internet of Things. So what lies ahead? Here are three intriguing possibilities:

Quantum Trends and The Internet of Things
Chuck Brooks, Chair of the IoT and Quantum Computing Committee of Quantum Security Alliance looks at some of the expected advantages of quantum computing for the IoT, as well as potential pitfalls.

Swarm Robotics and IoT
Swarm robotics, inspired by ant and bee colonies, is a technology that coordinates large groups of simple robots to cooperate and perform complex tasks that a single robot cannot do.

Microbiology for the IoT
Harnessing bacteria as IoT endpoints? It might not be as far-fetched as it seems. Equipped with their own sensors, processing engines, and data storage, bacteria have come under the microscope in a whole new way―as candidates for the Internet of Bio-Nano Things (IoBNT).

All of these endeavors in the near and distant future share a common requirement―secure, real-time data communication. It seems we have quite a decade ahead of us.

Skkynet Travels to India

Last month Xavier Mesrobian and Michael Quartarone from Skkynet took a trip to India to visit our Sales Partner, Masibus Automation and Instrumentation Pvt. Ltd., and meet with some of their key clients in Ahmedabad and Mumbai.  Masibus is one of the top automation companies in India, representing major hardware and software brands like Schneider Electric and AVEVA, as well as designing and producing electronics for automation, security, and industrial use.  They are active in most industrial verticals, and have a network of dealers and system integrators across India and reaching the Middle East.

Masibus has been a distributor for Cogent and Skkynet products and services since 2013.  The purpose of this visit was to strengthen ties of friendship and cooperation, and explore new business opportunities together.  Both Skkynet and Masibus are keen to implement Industrial IoT applications in India, focusing on current opportunities in manufacturing, energy, and wastewater management.

“India’s economy is growing and changing in so many ways and to the benefit of her people,” said Xavier Mesrobian, Skkynet’s VP of Sales and Marketing.  “So the opportunity to travel there and meet with Masibus and some of their customers was one we were looking forward to.”

“Having Skkynet spend time with us and visit with customers was a tremendous opportunity to build relationships and expand the presence of the Skkynet brand,” said Dominic Cordeiro, Technical Director for Masibus.  “Customers were very interested in the technology and could recognize the benefits in supporting their project requirements.”

The visit started off with an overview of the Masibus company organization, and a training session on Skkynet software and services for the Masibus sales and technical teams.  Following that were in-depth discussions on how to best meet the needs of Masibus customers by employing Skkynet technologies.

Then most of the time was spent visiting customer sites in Ahmedabad and Mumbai, meeting with management and engineering teams, and discussing how Masibus can best address their requirements using Skkynet software and services.

“We were impressed with the Masibus team in terms of their enthusiasm, knowledge and commitment to growing the business for the DataHub,” said Michael Quartarone, Director of Channel Sales for Skkynet.  “Having lived my entire life in the Toronto area, arriving in India was quite a cultural shock.  Travelling there on business and not as a tourist gave me a unique perspective on the people and how they live and work.  I was so intrigued by their culture; people are friendly and happy―and despite the chaotic traffic―it all works surprisingly well.”

Think Big, Start Small, Scale Up

Every so often we get reports of how things are going with Industrial IoT and digital transformation projects. Although our customers keep us informed, it’s also interesting to hear from the rest of the world, through trade shows, conferences, industry publications and the like. In a recent event in Singapore hosted by ARC Advisory Group, executives and technical experts shared their experiences with colleagues, suppliers, and industry gurus. A summary of three of these presentations was published in a blog titled Lessons from the Industry of Things.

Funnily enough, among those three presentations, two of them had an almost identical approach to implementing Industrial IoT. They even had similar terminology, which is essentially: Think Big, Start Small, Scale Up Fast. The idea is to keep your thinking about IoT as broad as possible at the beginning, with no idea left off the table. Then start with small, inexpensive, easily-managed pilot implementations. As soon as something starts working well, scale up quickly.

“Prototype small is about telling people to stop writing business plans and give it a go―quickly and at low cost,” said the Executive VP and CTO of Australia’s largest producer of natural gas, Shaun Gregory. “And because you lower the consequence of getting things wrong, as long as you’ve learned something, I don’t really care if you fail. Once you have a working prototype, if you do not scale this into your business, you won’t reap the benefits you anticipated.”

The challenge: Scale Up

It all sounds very good. But there is more to the story. There seems to be a challenge in moving from step 2 to step 3, the “Scale Up” step. The article goes on to say, “Mr. Gregory admitted that scaling solutions is the aspect the company has struggled with the most.”

He’s not alone. User surveys from industry analysts show that there is a significant drop in IoT project completion and success compared to the number of working pilots and prototypes. There are probably several factors at work here, including:

  1. Industrial IoT is very different from consumer IoT. In production-level implementations data volumes are much higher, real-time performance is typically a must, and security requirements are much more stringent.
  1. Industrial IoT is very different from in-plant industrial data communication. Again, security is a big issue, as well as protocol translation, gateway technologies, and the need to integrate with IT.
  1. Human factors, like adapting to new ways of thinking, a need for retraining, and new approaches to security, are often overlooked.

All of these factors can be addressed―the first two with the right technology, and the third by appropriate human resource development. Our focus is on the first two. Skkynet technology works equally well on turn-key projects as it does for pilots. For hundreds of connections, or just one. For thousands of data points or just a handful.

The DataHub technology, with its secure-by-design architecture and ability to seamlessly integrate the most important industrial protocols, meets the most stringent requirements for security, throughput, and ease of use that the world’s top engineering and system integration companies value.

Just last month we announced a new partnership with Siemens to use the DataHub with their DCU (Data Capture Unit) to offer “Bulletproof IIoT”. This partnership came after extensive testing of the DataHub to ensure that it meets Siemens’ high standards for security, robust performance, and ease of use that Industry 4.0 and Industrial IoT demand. Customers installing the DCU, or any other DataHub connected system, can rest assured that when it comes time to scale up, they will be fully-equipped and ready.

Security by Design

“Security by Design is strongly needed to reduce risk,” said Maximillian G. Koń, CEO at WisePlant, in a recent article in Advancing Automation: Industrial Cybersecurity. He tells how so many industrial automation and control systems were created decades ago, long before the idea of sending plant data to IT or the cloud was ever dreamed of. He says that security weaknesses were generated “during system design, engineering, construction, installation, commissioning, operation, maintenance, and retirement.” And he warns that security must be inherent in the system, not simply added as an afterthought.

Wake-Up Call

To illustrate his point, Koń tells the story of the S.S. Eastland, a passenger ship that sailed the Great Lakes at the beginning of the last century. The ship was not well-designed to start with, having problems with stability. After the sinking of the Titanic, new safety regulations required installing enough lifeboats on any ship to hold all the passengers it was rated for. The owner of the S.S. Eastland complied, and soon the vessel had a full set of new lifeboats, mounted above the upper decks.

However, the ship was not designed for this additional weight so high above the center of gravity. One tragic day as several thousand people were boarding for a pleasure cruise, the Eastland began listing heavily, and then suddenly rolled over and sank, right next to the pier, in 20 feet of water. Over 800 people were lost.

To avoid such tragedies in the industrial realm, Koń lays out an Industrial Cybersecurity Program that follows a security by design approach in three phases: Assess, Implement, and Maintain. When discussing the Implement phase, Koń talks about “bolt-on security vs. built-in security.” He says that existing systems must use bolt-on security, while new systems can be designed with built-in security. Although this principle makes sense, it begs the question: Why should existing systems have to settle for bolt-on security?

A New Approach

Most traditional technologies do require bolt-on security. But a new approach to data communication, Skkynet’s DHTP protocol, supports software and services that are secure by design and ideal for Industrial IoT and IT-to-OT applications. This security-by-design implementation works equally well for new or existing systems, providing the best of both worlds. Rather than adding security to an existing system, it connects that system to a complete, stand-alone, secure-by-design IoT implementation.  It’s almost like enveloping a ship in some kind of new, sink-proof technology, rather than simply adding lifeboats.

With Skkynet’s technology, the enterprise can keep its legacy equipment and SCADA systems as long as needed, and yet provide secure access to live production data for authorized parties―on-premise or in the cloud. Whenever new hardware is acquired, it can be phased in as necessary, with no disruption to data links between shop floor and top floor.

The important thing is the principle: Security by Design. Security is not something that can be bolted on at the end. It needs to be an integral, built-in part of the design of hardware, software, and industrial control systems. Let’s take to heart the lesson of the S.S. Eastland, and keep our systems on an even keel. With the right technology and approach, Industrial IoT and IT-to-OT data communication can be as secure as the air-gapped systems of yesteryear.

Trust and the Industrial IoT

They say that in business, it all comes down to trust. American author H. L. Mencken once wrote, “It is mutual trust, even more than mutual interest, that holds human associations together.” To succeed in life, we need to trust people. The same holds true for technology. To succeed in today’s world, we need to trust technology―from products like smart phones and cars to the tools and industrial processes that created them. To whatever extent that we trust technology, we apply it to improve our lives.

But just as there are some people we cannot trust, we should not blindly trust any technology that comes along. Some technologies are more trustworthy than others. So how can you know which ones are best? Take the Industrial IoT for example. Although it offers many benefits, engineers are justifiably cautious in adopting the various IoT technologies available, citing concerns for reliability and security.

Addressing this question, the Industrial Internet Consortium recently published a document titled Managing and Assessing Trustworthiness for IIoT in Practice. It defines trustworthiness as “the degree to which the system performs as expected” and to that end states, “Confidence comes from the assurance that several aspects of the system are under control: security of its data and of its equipment, safety for people and the community, protection of assets, privacy protection of data, reliability of operations and subsystems, and resilience of the system.”

Five Aspects of Trust

The document expands on this idea, locating within both OT (operational technology) and IT five basic aspects of trustworthiness: security, safety, privacy, reliability, and resilience. It shows how each of these may be more or less relevant to the requirements of OT or IT taken separately, and how they are all essential to any Industrial IoT solution. As we see it, this underscores the importance of a truly industrial approach to data communications:

  • Secure-by-design communications should not compromise in any way the security measures that are already in place in a production system. Indeed, the IoT system should measure up to those standards.
  • The safety of plant personnel should not be put into jeopardy as a result of connecting to the IoT.
  • Privacy of data has to be maintained, so that each connecting party gains access only to the information meant for them.
  • Reliability of data transfer must be ensured to the extent possible, given the fact that Internet connections are not 100% stable. Data protocols must be able to indicate the quality (trustworthiness) of the data at every moment so that clients can act accordingly.
  • Resilience of the connection, including the ability to optimize high-speed or low-speed connections over wide or narrow bandwidths, and to recover quickly and gracefully from an outage, keeps the data flowing in the best way possible.

“The network must be built with the expectation of heavy damage,” wrote Paul Baran, one of the developers of ARPANET, precursor to the Internet, back in 1964. So, too, should be the implementation of industrial data communications over the Internet of Things. As with personal relationships, it may be difficult to achieve 100% trustworthiness for this technology. But the value of any Industrial IoT system should be considered in light of how close it comes to that goal.